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Abstract
The cluster variation method (CVM) is a hierarchy of approximate
variational techniques for discrete (Ising-like) models in equilibrium statistical
mechanics, improving on the mean-field approximation and the Bethe–Peierls
approximation, which can be regarded as the lowest level of the CVM. In
recent years it has been applied both in statistical physics and to inference and
optimization problems formulated in terms of probabilistic graphical models.
The foundations of the CVM are briefly reviewed, and the relations with similar
techniques are discussed. The main properties of the method are considered,
with emphasis on its exactness for particular models and on its asymptotic
properties. The problem of the minimization of the variational free energy,
which arises in the CVM, is also addressed, and recent results about both
provably convergent and message-passing algorithms are discussed.

PACS numbers: 05.10.−a, 05.50.+q, 89.70.+c

1. Introduction

The cluster variation method (CVM) was introduced by Kikuchi [1] in 1951, as an
approximation technique for the equilibrium statistical mechanics of lattice (Ising-like) models,
generalizing the Bethe–Peierls [2, 3] and Kramers–Wannier [4, 5] approximations, an account
of which can be found in several textbooks [6, 7]. Apart from rederiving these methods,
Kikuchi proposed a combinatorial derivation of what today we can call the cube (respectively
triangle, tetrahedron) approximation of the CVM for the Ising model on the simple cubic
(respectively triangular, face centred cubic) lattice.

After the first proposal, many reformulations and applications, mainly to the computation
of phase diagram of lattice models in statistical physics and material science, appeared, and
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have been reviewed in [8]. The main line of activity has dealt with homogeneous, translation-
invariant lattice models with classical, discrete degrees of freedom, but several other directions
have been followed, including for instance models with continuous degrees of freedom [9],
free surfaces [10, 11], models of polymers [12, 13] and quantum models [14, 15]. Out of
equilibrium properties have also been studied, in the framework of the path probability method
[16–18], which is the dynamical version of the CVM. Despite the CVM predicts mean-field-
like critical behaviour, the problem of extracting critical behaviour from sequences of CVM
approximations has also been considered by means of different approaches [19–23].

A line of research which is particularly relevant to the present discussion has considered
heterogeneous and random models. Much work was devoted in the 1980s to applications of
the CVM to models with quenched random interactions (see, e.g., [24] and references therein),
mainly aiming at the phase diagram, and related equilibrium properties, of Ising-like models
of spin glasses in the average case. The most common approach was based on the distribution
of the effective fields, and population dynamics algorithms were developed and studied for
the corresponding integral equations. All these efforts were, however, limited at the replica-
symmetric level. Approaches taking into account the first step of replica symmetry breaking
have been developed only recently [25], at the level of the Bethe–Peierls approximation,
in its cavity method formulation, for models on random graphs in both the single instance
and average case. These approaches have been particularly successful in their application to
combinatorial optimization problems, like satisfiability [26] and graph colouring [27]. Another
interesting approach going in a similar direction has been proposed recently [28], which relies
on the analysis of the time evolution of message-passing algorithms for the Bethe–Peierls
approximation.

Prompted by the interest in optimization and, more generally, inference problems, a lot of
work on the CVM has been done in recent years by researchers also working on probabilistic
graphical models [29], since the relation between the Bethe–Peierls approximation and the
belief propagation method [30] was recognized [31]. The interaction between the two
communities of researchers working on statistical physics and optimization and inference
algorithms then led to the discovery of several new algorithms for the CVM variational
problem, and to a deeper understanding of the method itself. There have been applications in
the fields of image restoration [32–35], computer vision [36], interference in two-dimensional
channels [37], decoding of error-correcting codes [38–40], diagnosis [41], unwrapping of
phase images [42], bioinformatics [43–45], language processing [46, 47].

The purpose of the present paper is to give a short account of recent advances on
methodological aspects, and therefore applications will not be considered in detail. It is
not meant to be exhaustive and the material included reflects in some way the interests of the
author. The plan of the paper is as follows. In section 2 the basic definitions for statistical
mechanics and probabilistic graphical models are given, and notation is established. In section 3
the CVM is introduced in its modern formulation, and in section 4 it is compared with related
approximation techniques. Its properties are then discussed, with particular emphasis on exact
results, in section 5. Finally, the use of the CVM as an approximation and the algorithms which
can be used to solve the CVM variational problem are illustrated in section 6. Conclusions
are drawn in section 7.

2. Statistical mechanical models and probabilistic graphical models

We are interested in dealing with models with discrete degrees of freedom which will be
denoted by s = {s1, s2, . . . , sN }. For instance, variables si could take values in the set {0, 1}
(binary variables), {−1, +1} (Ising spins), or {1, 2, . . . , q} (Potts variables).
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Figure 1. An example of a factor graph: variable and function nodes are denoted by circles and
squares, respectively.

Statistical mechanical models are defined through an energy function, usually called
Hamiltonian, H = H(s), and the corresponding probability distribution at thermal equilibrium
is the Boltzmann distribution

p(s) = 1

Z
exp[−H(s)], (1)

where the inverse temperature β = (kBT )−1 has been absorbed into the Hamiltonian and

Z ≡ exp(−F) =
∑

s

exp[−H(s)] (2)

is the partition function, with F the free energy.
The Hamiltonian is typically a sum of terms, each involving a small number of variables.

A useful representation is given by the factor graph [48]. A factor graph is a bipartite graph
made of variable nodes i, j, . . . , one for each variable, and function nodes a, b, . . . , one for
each term of the Hamiltonian. An edge joins a variable node i and a function node a if and
only if i ∈ a, that is the variable si appears in Ha , the term of the Hamiltonian associated with
a. The Hamiltonian can then be written as

H =
∑

a

Ha(sa), sa = {si, i ∈ a}. (3)

A simple example of a factor graph is reported in figure 1, and the corresponding Hamiltonian
is written as

H(s1, s2, s3, s4, s5, s6) = Ha(s1, s2) + Hb(s2, s3, s4) + Hc(s3, s4, s5, s6). (4)

The factor graph representation is particularly useful for models with non-pairwise interactions.
If the Hamiltonian contains only 1-variable and 2-variable terms, as in the Ising model

H = −
∑

i

hisi −
∑
(i,j)

Jij sisj , (5)

then it is customary to draw a simpler graph, where only variable nodes appear, and edges are
drawn between pairs of interacting spins (i, j). In physical models the interaction strength
Jij can depend on the distance between spins, and the interaction is often restricted to nearest
neighbours (NNs), which are denoted by 〈i, j 〉.

In combinatorial optimization problems, the Hamiltonian plays the role of a cost function,
and one is interested in the low-temperature limit T → 0, where only minimal energy states
(ground states) have a non-vanishing probability.

Probabilistic graphical models [29, 49] are usually defined in a slightly different way. In
the case of Markov random fields, also called Markov networks, the joint distribution over all
variables is given by

p(s) = 1

Z

∏
a

ψa(sa), (6)
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where ψa is called potential (potentials involving only one variable are often called evidences)
and

Z =
∑

s

∏
a

ψa(sa). (7)

Of course, a statistical mechanical model described by the Hamiltonian (3) corresponds to a
probabilistic graphical models with potentials ψa = exp(−Ha). On the other hand, Bayesian
networks, which we will not consider here in detail, are defined in terms of directed graphs
and conditional probabilities. It must be noted, however, that a Bayesian network can always
be mapped onto a Markov network [29].

3. Fundamentals of the cluster variation method

The original proposal by Kikuchi [1] was based on an approximation for the number of
configurations of a lattice model with assigned local expectation values. The formalism was
rather involved to deal with in the general case, and since then many reformulations came. A
first important step was taken by Barker [50], who derived a computationally useful expression
for the entropy approximation. This was then rewritten as a cumulant expansion by Morita
[51, 52], and Schlijper [53] noted that this expansion could have been written in terms of a
Möbius inversion. A clear and simple formulation was then eventually set up by An [54], and
this is the one we shall follow below.

The CVM can be derived from the variational principle of equilibrium statistical
mechanics, where the free energy is given by

F = −lnZ = min
p

F(p) = min
p

∑
s

[p(s)H(s) + p(s) ln p(s)] (8)

subject to the normalization constraint∑
s

p(s) = 1. (9)

It is easily verified that the minimum is obtained for the Boltzmann distribution

p̂(s) = 1

Z
exp[−H(s)] = arg min F (10)

and that the variational free energy can be written in the form of a Kullback–Leibler distance

F(p) = F +
∑

s

p(s) ln
p(s)

p̂(s)
. (11)

The basic idea underlying the CVM is to treat exactly the first term (energy) of the
variational free energy F(p) in equation (8) and to approximate the second one (entropy) by
means of a truncated cumulant expansion.

We first define a cluster α as a subset of the factor graph such that if a factor node belongs
to α, then all the variable nodes i ∈ a also belong to α (while the converse need not to be
true, otherwise the only legitimate clusters would be the connected components of the factor
graph). Given a cluster we can define its energy

Hα(sα) =
∑
a∈α

Ha(sa), (12)

probability distribution

pα(sα) =
∑
s\sα

p(s) (13)
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and entropy

Sα = −
∑
sα

pα(sα) ln pα(sα). (14)

Then the entropy cumulants are defined by

Sα =
∑
β⊆α

S̃β, (15)

which can be solved with respect to the cumulants by means of a Möbius inversion, which
yields

S̃β =
∑
α⊆β

(−1)nα−nβ Sα, (16)

where nα denotes the number of variables in cluster α. The variational free energy can then
be written as

F(p) =
∑

s

p(s)H(s) −
∑

β

S̃β, (17)

where the second summation is over all possible clusters.
The above equation is still an exact one, and here the approximation enters. A set R

of clusters, made of maximal clusters and all their subclusters, is selected, and the cumulant
expansion of the entropy is truncated retaining only terms corresponding to clusters in R. In
order to treat the energy term exactly it is necessary that each function node is contained in at
least one maximal cluster. One gets∑

β

S̃β �
∑
β∈R

S̃β =
∑
α∈R

aαSα, (18)

where the coefficients aα , sometimes called Möbius numbers, satisfy [54]∑
β⊆α∈R

aα = 1 ∀ β ∈ R. (19)

The above condition means that every subcluster must be counted exactly once in the entropy
expansion and allows us to rewrite also the energy term as a sum of cluster energies, yielding
the approximate variational free energy

F({pα, α ∈ R}) =
∑
α∈R

aαFα(pα), (20)

where the cluster free energies are given by

Fα(pα) =
∑
sα

[pα(sα)Hα(sα) + pα(sα) ln pα(sα)]. (21)

The CVM then amounts to the minimization of the above variational free energy with respect
to the cluster probability distributions, subject to the normalization∑

sα

pα(sα) = 1 ∀α ∈ R (22)

and compatibility constraints

pβ(sβ) =
∑
sα\β

pα(sα) ∀β ⊂ α ∈ R. (23)

It is of great importance to observe that the above constraint set is approximate, in the sense that
there are sets of cluster probability distributions that satisfy these constraints and nevertheless
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Figure 2. Cumulants for the square lattice Ising model.

cannot be obtained as marginals of a joint probability distribution. An explicit example will
be given in section 5.

The simplest example is the pair approximation for a model with pairwise interactions,
like the Ising model (5). The maximal clusters are the pairs of interacting variables, and the
other clusters appearing in R are the variable nodes. The pairs have Möbius number 1, while
for the variable nodes ai = 1 − di , where di is the degree of node i, that is, in the factor graph
representation, the number of function nodes it belongs to.

The quality of the approximation (18) depends on the value of the neglected cumulants.
In the applications to lattice systems it is typically assumed that, since cumulants are related
to correlations, they vanish quickly for clusters larger than the correlation length of the model.
In figure 2 the first cumulants, relative to the site (single variable) entropy, are shown for
the homogeneous (Jij = J ), zero field (hi = 0), square lattice Ising model, in the square
approximation of the CVM.

It can be seen that the cumulants peak at the (approximate) critical point and decrease as
the cluster size increases. This property is not however completely general, it may depend on
the interaction range. It has been shown [55] that this does not hold for finite instances of the
Sherrington–Kirkpatrick spin-glass model, which is a fully connected model.

The meaning of cumulants as a measure of correlation can be easily understood by
considering a pair of weakly correlated variables and writing their joint distribution as

p12(s1, s2) = p1(s1)p2(s2)[1 + εq(s1, s2)], ε 
 1. (24)

The corresponding cumulant is then

S̃12 = S12 − S1 − S2 = −〈ln[1 + εq(s1, s2)]〉 = O(ε). (25)

4. Region-based free energy approximations

The idea of region-based free energy approximations, put forward by Yedidia [56], is quite
useful to elucidate some of the characteristics of the method, and its relations to other
techniques. A region-based free energy approximation is formally similar to the CVM,
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Figure 3. Factor graph of a model for which the Bethe–Peierls approximation is not a special case
of the CVM.

and can be defined through equations (20) and (21), but the requirements on the coefficients
aα are weaker. The single counting condition is imposed only on variable and function nodes,
instead of all subclusters:∑

α∈R,a∈α

aα = 1 ∀ a, (26)

∑
α∈R,i∈α

aα = 1 ∀ i. (27)

Interesting particular cases are obtained if R contains only two types of regions, large
regions and small regions. The junction graph method [56, 57] is obtained if they form a
directed graph, with edges from large to small regions, such that

(i) every edge connects a large region with a small region which is a subset of the former;
(ii) the subgraph of the regions containing a given node is a connected tree.

On the other hand, the Bethe–Peierls approximation, in its most general formulation, is
obtained by taking function nodes (with the associated variable nodes) as large regions and
variable nodes as small regions. This reduces to the usual statistical physics formulation in
the case of pairwise interactions.

The CVM is a special region-based free energy approximation, with the property that
R is closed under intersection. Indeed, one could define R for the CVM as the set made of
the maximal clusters and all the clusters which can be obtained by taking all the possible
intersections of (any number of) maximal clusters.

It is easy to verify that the Bethe–Peierls approximation is a special case of CVM only if
no function node shares more than one variable node with another function node. If this is not
the case, one should be careful when applying the Bethe–Peierls approximation. Consider a
model with the factor graph depicted in figure 3, where si = ±1 (i = 1, 2, 3, 4), H = Ha +Hb

and

Ha(s1, s2, s3) = −h0s1 − h

2
(s2 + s3) − J s1s2s3, (28)

Hb(s2, s3, s4) = −h0s4 − h

2
(s2 + s3) − J s2s3s4. (29)

The CVM, with function nodes as maximal clusters, is exact (note that it coincides with
the junction graph method), and the corresponding exact cumulant expansion for the entropy
is

S = Sa + Sb − S23, (30)

while the Bethe–Peierls entropy is

SBP = Sa + Sb − S2 − S3. (31)



R316 Topical Review

0 2 4
J

0

0.5

1

1.5

S

h
0
 = 2, h = 0.1

Exact

Bethe

Figure 4. Entropy of the Bethe–Peierls approximation versus the exact one for a model for which
the Bethe–Peierls approximation is not a special case of the CVM.

The two entropies differ by the cumulant S̃23 = S23 −S2 −S3, and hence correlations between
variable nodes 2 and 3 cannot be captured by the Bethe–Peierls approximation. In figure 4
it is clearly illustrated how the Bethe–Peierls approximation can fail. At large enough J the
exact entropy is larger (by roughly ln 2) than the Bethe–Peierls one.

5. Exactly solvable cases

The CVM is known to be exact in several cases, due to the topology of the underlying graph,
or to the special form of the Hamiltonian. In the present section we shall first consider cases
in which the CVM is exact due to the graph topology, then proceed to the issue of realizability
and consider cases where the form of the Hamiltonian makes an exact solution feasible with
the CVM.

5.1. Tree-like graphs

It is well known that the CVM is exact for models defined on tree-like graphs. This statement
can be made more precise by referring to the concept of junction tree [58, 59], which we shall
actually use in its generalized form given by Yedidia, Freeman and Weiss [56]. A junction
tree is a tree-like junction graph. The corresponding large regions are often called cliques,
and the small regions separators. With reference to figure 3 it is easy to check that the
CVM, as described in the previous section, corresponds to a junction tree with cliques (a123)

and (b234) and separator (23), while the junction graph corresponding to the Bethe–Peierls
approximation is not a tree.

For a model defined on a junction tree the joint probability distribution factors [56, 60]
according to

p(s) =
∏

α∈RL
pα(sα)∏

β∈RS
p

dβ−1
β (sβ)

, (32)

where RL and RS denote the sets of large and small regions, respectively, and dβ is the degree
of the small region β in the junction tree. Note that no normalization is needed.

The above factorization of the probability leads to the exact cumulant expansion

S =
∑
α∈RL

Sα −
∑
β∈RS

(dβ − 1)Sβ, (33)

and therefore the CVM with R = RL ∪ RS is exact.
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Figure 5. A one-dimensional strip and the clusters used to solve a pairwise model on it.

As a first example, consider a particular subset of the square lattice, the strip depicted in
figure 5, with open boundary conditions in the horizontal direction, and define on it a model
with pairwise interactions (we do not use the factor graph representation here).

According to the junction tree property, the joint probability factors as follows:

p(s) =
∏

α∈II pα(sα)∏
β∈I pβ(sβ)

, (34)

where I and II denote the sets of chains (except boundary ones) and ladders, respectively,
shown in figure 5. As a consequence, the cumulant expansion

S =
∑
α∈II

Sα −
∑
β∈I

Sβ (35)

of the entropy is also exact, and the cluster variation method with R = II ∪ I is exact. For
strip width N = 1 we obtain the well-known statement that the Bethe–Peierls approximation
is exact for a one-dimensional chain. Rigorous proofs of this statement have been given by
Brascamp [61] and Percus [62]. More generally, Schlijper has shown [63] that the equilibrium
probability of a d-dimensional statistical mechanical model with finite range interactions is
completely determined by its restrictions (marginals) to d − 1-dimensional slices of width at
least equal to the interaction range.

In the infinite length limit L → ∞ translational invariance is recovered

F
L

=
∑
s,s′

([pII(s, s′)HII(s, s′) + pII(s, s′) ln pII(s, s′)] −
∑

s

pI(s) ln pI(s) (36)

and solving for pII we obtain the transfer matrix formalism

F

L
= −ln max

pI

{∑
s,s′

p
1/2
I (s) exp[−HII(s, s′)]p1/2

I (s′)

}
(37)

∑
s

pI(s) = 1. (38)

The natural iteration method (see section 6.3) in this case reduces to the power method
for finding the largest eigenvalue of the transfer matrix.

As a second example, consider a tree, like the one depicted in figure 6, and a model with
pairwise interactions defined on it.
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Figure 7. A small portion of a square cactus lattice.

In this case the probability factors according to

p(s) =
∏

〈ij〉 pij (si, sj )∏
i p

di−1
i (si)

, (39)

where 〈ij 〉 denotes a pair of adjacent nodes. The cumulant expansion of the entropy is therefore

S =
∑
〈ij〉

Sij −
∑

i

(di − 1)Si, (40)

and the pair approximation of the CVM (coinciding with Bethe–Peierls and junction graph) is
exact. Recently this property has been exploited to study models on finite connectivity random
graphs, which strictly speaking are not tree like: loops are present, but in the thermodynamic
limit their typical length scales like ln N [64].

As a final example, consider the so-called (square) cactus lattice (the interior of a Husimi
tree), depicted in figure 7.

Here the probability factors according to

p(s) =
∏

� p�(s�)∏
i pi(si)

, (41)

the entropy cumulant expansion takes the form

S =
∑
�

S� −
∑

i

Si, (42)

and the CVM with R made of square plaquettes and sites is exact. Again, this coincides with
the junction graph method and, if function nodes are associated with square plaquettes (so that
the corresponding factor graph is tree-like), with Bethe–Peierls.
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5.2. Realizability

We have seen that when the probability factors in a suitable way, the CVM can be used to
find an exact solution. By analogy, we could ask whether, as in the mean-field approximation,
CVM approximations can yield an estimate of the joint probability distribution as a function
of the cluster distributions, in a factorized form (this property is called realizability). In the
general case, the answer is negative. One cannot, using a trial factorized form like∏

α

[pα(sα)]aα (43)

(which would lead to a free energy like that in equations (20)–(21)), obtain a joint probability
distribution which marginalizes down to the cluster probability distributions used as a starting
point. As a consequence, we have no guarantee that the CVM free energy is an upper bound
to the exact free energy. Moreover, in sufficiently frustrated problems, the cluster probability
distributions cannot even be regarded as marginals of a joint probability distribution [65].

It can be easily checked that equation (43) is not, in the general case, a probability
distribution. It is not normalized and therefore its marginals do not coincide with the pα used
to build it. At best, one can show that∏

α

[pα(sα)]aα ∝ exp[−H(s)], (44)

but the normalization constant is unknown. This has been proven in [66] at the Bethe–Peierls
level, and the proof can be easily generalized to any CVM approximation.

Let us now focus on a very simple example. Consider three Ising variables, si = ±1, i =
1, 2, 3, with the following node and pair probabilities:

pi(si) = 1/2 i = 1, 2, 3 (45)

pij (si, sj ) = 1 + csisj

4
, −1 � c � 1, i < j. (46)

A joint p(s1, s2, s3) marginalizing to the above probabilities exists for −1/3 � c � 1, which
shows clearly that the constraint set equation (23) is approximate, and in particular it can be
too loose. For instance, in [67] it has been shown that due to this problem the Bethe–Peierls
approximation for the triangular Ising antiferromagnet predicts, at low temperature, unphysical
results for the correlations and a negative entropy.

Moreover, the joint probability p(s1, s2, s3) is given by the CVM-like factorized form

p12(s1, s2)p13(s1, s3)p23(s2, s3)

p1(s1)p2(s2)p3(s3)
(47)

only if c = 0, that is if the variables are completely uncorrelated.
As a more interesting case, we shall consider in the next subsection the square lattice Ising

model. In this case it has been shown [68, 69] that requiring realizability yields an exactly
solvable case.

5.3. Disorder points

For a homogeneous (translation-invariant) model defined on a square lattice, the square
approximation of the CVM, that is the approximation obtained by taking the elementary
square plaquettes as maximal clusters, entails the following approximate entropy expansion:

S �
∑
�

S� −
∑
〈ij〉

Sij +
∑

i

Si . (48)
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Figure 8. A 3 × 3 square on the square lattice.

The corresponding factorization∏
�

p�(s�)
∏
〈ij〉

p−1
ij (si, sj )

∏
i

pi(si) (49)

for the probability does not, in general, give an approximation to the exact equilibrium
distribution. Indeed, it does not marginalize to the cluster distributions and is not even
normalized.

One could, however, try to impose that the joint probability given by the above factorization
marginalizes to the cluster distributions. It turns out that it is sufficient to impose such a
condition on the probability distribution of a 3 × 3 square, like the one depicted in figure 8. It
is easy to check that for an Ising model the CVM-like function

p4(s1, s2, s5, s4)p4(s2, s3, s6, s5)p4(s4, s5, s8, s7)p4(s5, s6, s9, s8)p1(s5)

p2(s2, s5)p2(s5, s8)p2(s4, s5)p2(s5, s6)
(50)

marginalizes to the square, pair and site distributions (p4, p2 and p1, respectively) only if odd
expectation values vanish and

〈sisk〉〈〈ik〉〉 = 〈sisj 〉2
〈ij〉, (51)

where the lhs is the next nearest neighbour correlation, while the rhs is the square of the nearest
neighbour correlation.

Leaving apart the trivial non-interacting case, the above condition is satisfied by an Ising
model with nearest neighbour, next nearest neighbour and plaquette interactions, described by
the Hamiltonian

H = −J1

∑
〈ij〉

sisj − J2

∑
〈〈ij〉〉

sisj − J4

∑
�

sisj sksl, (52)

if the couplings satisfy the disorder condition (see [68] and references therein)

cosh(2J1) = e4J2+2J4 + e−4J2+2J4 + 2e−2J2

2(e2J2 + e2J4)
. (53)

This defines a variety in the parameter space, lying in the disordered phase of the model, and
in particular in the region where nearest neighbour and next nearest neighbour interactions
compete. In this case the square approximation of the CVM yields the exact solution, including
the exact free energy density

f = −ln[exp(−J4) + exp(J4 − 2J2)], (54)
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and the nearest neighbour correlation

g = 〈sisj 〉〈ij〉 = exp(−4J2) − cosh(2J1)

sinh(2J1)
. (55)

Higher order correlations can be derived from the joint probability equation (49), for example
the two–body correlation function �(x, y) = 〈s(x0, y0)s(x0 +x, y0 +y)〉 (where spin variables
have been identified by their coordinates on the lattice), which simply reduces to a power of
the nearest neighbour correlation: �(x, y) = g|x|+|y|. For this reason a line of disorder points
is often referred to as a one-dimensional line. Or the plaquette correlation

q = 〈sisj sksl〉� = e4J4(1 − e8J2) + 4 e2J2(e2J4 − e2J2)

e4J4(1 − e8J2) + 4 e2J2(e2J4 + e2J2)
. (56)

Finally, since all the pair correlations are given simply as powers of the nearest–neighbour
correlation we can easily calculate the momentum space correlation function, or structure
factor. We first write �(x, y) = exp

(−|x|+|y|
ξ

)
, where ξ = −(ln g)−1. After a Fourier

transform one finds S(px, py) = S1(px)S1(py), where

S1(p) = sinh(1/ξ)

cosh(1/ξ) − cos p
. (57)

It can be verified that the structure factors calculated by Sanchez [70] and (except for a
misprint) Cirillo and coworkers [71] reduce to the above expression on the disorder line.

5.4. Wako–Saitô–Muñoz–Eaton model of protein folding

There is at least another case in which the probability factors at the level of square plaquettes,
and the CVM yields the exact solution. It is the Wako–Saitô–Muñoz–Eaton model of protein
folding [72–79]. Here we will not delve into the details of the model, giving only its
Hamiltonian in the form

H =
L∑

i=1

L∑
j=i

hi,j xi,j , xi,j =
j∏

k=i

xk, xk = 0, 1. (58)

It is a one-dimensional model with arbitrary range multivariable interactions, but the particular
form of these interactions makes an exact solution possible. A crucial step in this solution was
the mapping to a two-dimensional model [77], where the statistical variables are the xi,j (see
figure 9 for an illustration). In terms of these variables the Hamiltonian is local, and the only
price one has to pay is to take into account the constraints

xi,j = xi+1,j xi,j−1, (59)

which can be viewed as local interactions.
In order to derive the factorization of the probability [79], we need first to exploit the

locality of interactions, which allows us to write

p({xi,j }) = p(1,2)p(2,3) · · · p(L−1,L)

p(2) · · ·p(L−1)
, (60)

where p(j) denotes the probability of the j th row in figure 9 and p(j,j+1) denotes the joint
probability of rows j and j + 1.

As a second step, consider the effect of the constraints. This is best understood looking
at the following example:

p(j)(0, · · · 0i , 1i+1, · · · 1) = p
(j)

i,i+1(0, 1)

= p
(j)

1,2(0, 0) · · · p(j)

i,i+1(0, 1) · · · p(j)

j−1,j (1, 1)

p
(j)

2 (0) · · · p(j)

i (0)p
(j)

i+1(1) · · · p(j)

j−1(1)
. (61)
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Figure 9. A typical configuration of the Muñoz–Eaton model. An empty (resp. filled) circle at
row i and column j represents the variable xi,j taking value 0 (resp. 1).

The CVM-like factorization is possible since every factor in the numerator, except p
(j)

i,i+1(0, 1),
cancels with a factor in the denominator. A similar result can be obtained for the joint
probability of two adjacent rows, and substituting into equation (60) one eventually gets

p({xi,j }) =
∏
α∈R

pα(xα)aα , (62)

where R = {square plaquettes, corners (on the diagonal), and their subclusters} and aα is the
CVM Möbius number for cluster α.

6. Cluster variation method as an approximation

In most applications the CVM does not yield exact results, and hence it is worth investigating
its properties as an approximation.

An important issue is the choice of maximal clusters, and in particular the existence of
sequence of approximations (that is, sequence of choices of maximal clusters) with some
property of convergence to the exact results. This has been long studied in the literature
regarding applications to lattice, translation invariant, systems and will be the subject of
section 6.1. In particular, rigorous results concerning sequences of approximations which
converge to the exact solution have been derived by Schlijper [53, 63, 80], providing a sound
theoretical basis for the earlier investigations by Kikuchi and Brush [81].

Another important issue is related to the practical determination of the minima of the
CVM variational free energy. In the variational formulation of statistical mechanics the free
energy is convex, but this property here is lost due to the presence of negative aα coefficients
in the entropy expansion. More precisely, it has been shown [82] that the CVM variational
free energy is convex if

∀S ⊆ R
∑
α∈RS

aα � 0 RS = {α ∈ R | ∃β ⊆ α, β ∈ S}. (63)

Similar conditions have been obtained by McEliece and Yildirim [83] and Heskes, Albers and
Kappen [84].

If this is not the case multiple minima can appear, and their determination can be nontrivial.
Several algorithms have been developed to deal with this problem, falling mainly in two classes:
message-passing algorithms, which will be discussed in section 6.2 and variational, provably
convergent algorithms, which will be discussed in section 6.3.
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Figure 10. Maximal cluster for the B2L approximation.
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Figure 11. Inverse critical temperature of the B2L approximation series.

6.1. Asymptotic behaviour

The first studies on the asymptotic behaviour of sequences of CVM approximations are due to
Schlijper [53, 63, 80]. He showed that it is possible to build sequences of CVM approximations
(that is, sequences of sets of maximal clusters) such that the corresponding sequence of free
energies converges to the exact one, for a translation-invariant model in the thermodynamic
limit. The most interesting result, related to the transfer matrix idea, is that for a d-dimensional
model the maximal clusters considered have to increase in d − 1 dimensions only.

These results provided a theoretical justification for the series of approximations developed
by Kikuchi and Brush [81], who introduced the B2L series of approximations for translation-
invariant models on the two-dimensional square lattice, based on zig-zag maximal clusters, as
shown in figure 10, and applied it to the zero field Ising model. Based solely on the results
from the B2 (which is equivalent to the plaquette approximation) and B4 approximations,
Kikuchi and Brush postulated a linear behaviour for the estimate of the critical temperature as
a function of (2L + 1)−1.

In figure 11 we have reported the inverse critical temperature as a function of (2L + 1)−1

for L = 1 to 6. The extrapolated inverse critical temperature is βc � 0.4397, to be compared
with the exactly known βc = 1

2 ln(1 +
√

2) � 0.4407.
It is not our purpose here to make a complete finite size scaling analysis, in the spirit

of the coherent anomaly method (see below), of the CVM approximation series. We limit
ourselves to show the finite size behaviour of the critical magnetization. More precisely, we
have computed the magnetization of the zero field Ising model on the square lattice at the
exactly known inverse critical temperature, again for L = 1 to 6. Figure 12 shows that the
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Figure 12. Critical temperature of the B2L approximation series.
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Figure 13. Zero temperature entropy of the triangular Ising antiferromagnet in the B2L

approximation series.

critical magnetization vanishes as (2L + 1)β/ν , and the fit gives a very good estimate for
the exponent, consistent with the exact result β/ν = 1/8.

As a further illustration of the asymptotic properties of the B2L series we report in
figure 13 the zero temperature entropy (actually the difference between the extrapolated
entropy density and the B2L estimate) of the Ising triangular antiferromagnet as a function
of 1/L [67]. It is clearly seen that asymptotically sL = s0 − aL−ψ , and the fit yields the
numerical results s0 ≈ 0.323 126 (the exact value being s ≈ 0.323 066) and ψ ≈ 1.7512
(remarkably close to 7/4).

An attempt to extract non-classical critical behaviour from high precision low and high
temperature results from CVM was made by the present author [19–22], using Padé and
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Adler approximants. This work has led to the development of an 18 (3 × 3 × 2) site cluster
approximation for the simple cubic lattice Ising model [22], which is probably the largest
cluster ever considered. The results obtained for the Ising model are still compatible with the
most recent estimates [85], although of lower precision.

It has also been considered the possibility of extracting non-classical critical behaviour
from CVM results by means of the coherent anomaly method, which applies finite size scaling
ideas to series of mean-field-like approximations. A review of these results can be found
in [23].

6.2. Message-passing algorithms

In order to describe this class of algorithms it is useful to start with the Bethe–
Peierls approximation (pair approximation of the CVM) free energy for the Ising model
equation (5):

F = −
∑

i

hi

∑
si

sipi(si) −
∑
〈ij〉

Jij

∑
si ,sj

sisjpij (si, sj )

+
∑
〈ij〉

∑
si ,sj

pij (si, sj ) ln pij (si, sj ) −
∑

i

(di − 1)
∑
si

pi(si) ln pi(si)

+
∑

i

λi

(∑
si

pi(si) − 1

)
+

∑
〈ij〉

λij


∑

si ,sj

pij (si, sj ) − 1




+
∑
〈ij〉


νi,j


∑

si

sipi(si) −
∑
si ,sj

sipij (si, sj )




+ νj,i


∑

sj

sjpj (sj ) −
∑
si ,sj

sjpij (si, sj )





 . (64)

One can easily recognize the energy terms, the pair entropy, the site entropy (with a Möbius
number −(di − 1), where di is the degree of node i), and the Lagrange terms corresponding
to the normalization and pair–site compatibility constraints. Observe that, due the presence of
normalization constraints, it is enough to impose the consistency between the spin expectation
values given by the site and pair probabilities.

A physical way of deriving message-passing algorithms for the determination of the
stationary points of the above free energy is through the introduction of the effective field
representation. Consider the interaction Jik and assume that, whenever this is not taken into
account exactly, its effect on variable si can be replaced by an effective field hi,k . This can be
made rigorous by observing that the stationarity conditions

∂F
∂pi(si)

= 0
∂F

∂pij (si, sj )
= 0 (65)

can be solved by writing the probabilities as

pi(si) = exp

[
Fi +

(
hi +

∑
kNNi

hi,k

)
si

]
(66)

pij (si, sj ) = exp


Fij +

(
hi +

k �=j∑
kNNi

hi,k

)
si +


hj +

k �=i∑
kNNj

hj,k


 sj + Jij sisj


 , (67)
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where the effective fields, and the site and pair free energies Fi and Fij , are related to the
Lagrange multipliers through

λi = (di − 1)(1 + Fi) λij = −1 − Fij νi,j = hi +
k �=j∑
kNNi

hi,k. (68)

Fi and Fij are determined by the normalization, but first of all the effective fields must be
computed by imposing the corresponding compatibility constraints, which can be cast into the
form

hi,j = tanh−1


tanh


hj +

k �=i∑
kNNj

hj,k


 tanh Jij


 . (69)

This is a set of coupled nonlinear equations which is often solved by iteration, that is an
initial guess is made for the hi,j , plugged into the rhs of equation (69) which returns a new
estimate, and the procedure is then repeated until a fixed point is (hopefully) reached. The
values of the effective fields at the fixed point can then be used to compute the probabilities
according to equation (67).

The above equations, and their generalizations at the CVM level, have been intensively
used in the 1980s for studying the average behaviour of models with quenched random
interactions, like Ising spin glass models. This work was started by a paper by Morita [86],
where an integral equation for the probability distribution of the effective field, given the
probability distributions of the interactions and fields, was derived. In the general case this
integral equation takes the form

pi,j (hi,j ) =
∫

δ


hi,j − tanh−1


tanh


hj +

k �=i∑
kNNj

hj,k


 tanh Jij







×Pj (hj ) dhjPij (Jij ) dJij

k �=i∏
kNNj

pj,k(hj,k) dhj,k, (70)

with simplifications occurring if the probability distributions can be assumed to be site
independent, which is the most studied case. Typical calculations concerned: the determination
of elements of the phase diagrams of Ising spin glass models, through the calculation of the
instability loci of the paramagnetic solution; results in the zero temperature limit, where
solutions with a discrete support are found; iterative numerical solutions of the integral
equation. A review of this line of research until 1986 can be found in [87]. It is important to
note that the results obtained by this approach are equivalent to those by the replica method,
at the replica symmetric level.

The effective field approach is reminiscent of the message-passing procedure at the heart
of the belief propagation (BP) algorithm, and indeed the messages appearing in this algorithm
are related, in the Ising case, to the effective fields by m〈ij〉→i (si) = exp(hi,j si), where
m〈ij〉→i (si) denotes a message going from the NN pair 〈ij 〉 to node i.

In order to derive the BP algorithm consider the Bethe–Peierls approximation for a model
with variable nodes i and factor nodes a. The variables si need not be limited to two states and
the Hamiltonian is written in the general form equation (3).

The CVM free energy, with the normalization and compatibility constraints, can then be
written as



Topical Review R327

F = −
∑

a

∑
sa

Ha(sa)pa(sa) +
∑

a

∑
sa

pa(sa) ln pa(sa) −
∑

i

(di − 1)
∑
si

pi(si) ln pi(si)

+
∑

i

λi

(∑
si

pi(si) − 1

)
+

∑
a

λa

(∑
a

∑
sa

pa(sa) − 1

)

+
∑

a

∑
i∈a

∑
si

µa,i(si)


pi(si) −

∑
sa\i

pa(sa)


 , (71)

where sa\i denotes the set of variables entering factor node a, except i.
The stationarity conditions

∂F
∂pi(si)

= 0
∂F

∂pa(sa)
= 0 (72)

can then be solved, in analogy with equation (67), by

pi(si) = 1

Zi

∏
i∈a

ma→i (si) pa(sa) = 1

Za

ψa(sa)
∏
k∈a

b �=a∏
k∈b

mb→k(sk). (73)

In the particular case of an Ising model with pairwise interactions, the previously mentioned
relationship between messages and effective fields is evident from the above equation.

Now Zi and Za take care of normalization, and the messages ma→i (si) are related to the
Lagrange multipliers by

µa,k(sk) =
b �=a∑
k∈b

ln mb→k(sk). (74)

Note that the messages can be regarded as exponentials of a new set of Lagrange
multipliers, with the constraints rewritten as in the following free energy:

F = −
∑

a

∑
sa

Ha(sa)pa(sa) +
∑

a

∑
sa

pa(sa) ln pa(sa) −
∑

i

(di − 1)
∑
si

pi(si) ln pi(si)

+
∑

i

λi

(∑
si

pi(si) − 1

)
+

∑
a

λa

(∑
a

∑
sa

pa(sa) − 1

)

+
∑

a

∑
i∈a

∑
si

ln ma→i (si)


(di − 1)pi(si) −

b �=a∑
i∈b

∑
sb\i

pb(sb)


 . (75)

Again, imposing compatibility between variable nodes and factor nodes, one gets a set of
coupled equations for the messages which, leaving apart normalization, reads

ma→i (si) ∝
∑
sa\i

ψa(sa)

k �=i∏
k∈a

b �=a∏
k∈b

mb→k(sk). (76)

The above equations, and their iterative solution, are the core of the BP algorithm. Also,
their structure justifies the name ‘sum-product’ [48], which is often given to them in the
literature on probabilistic graphical models, and the corresponding term ‘max-product’ for
their zero temperature limit.

There are several issues which must be considered when discussing the property of an
iterative algorithm based on equation (76). First of all, one could ask whether messages have
to be updated sequentially or in parallel. This degree of freedom does not affect the fixed
points of the algorithm, but it affects the dynamics. This issue has been considered in some
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depth by Kfir and Kanter [88] in the context of the decoding of error-correcting codes. In that
case they showed that the sequential update results in twice faster convergence with respect to
the parallel update.

Convergence is, however, not guaranteed if the underlying graph is not tree like, that is if
the pair approximation of the CVM is not exact. This issue has been investigated theoretically
by Tatikonda and Jordan [89], Mooij and Kappen [90], and Ihler et al [91], who derived
sufficient conditions for convergence, and by Heskes [92], who derived sufficient conditions
for the uniqueness of the fixed point. In practice it is typically observed that the BP algorithm
converges if the frustration due to competitive interactions, like those characteristic of spin-
glass or constraint satisfaction models, is not too large. In some cases, the trick of damping, or
inertia, can help extending the convergence domain. The trick consists in taking the updated
message equal to a weighted (possibly geometrical) average of the old message and the new
one given by equation (76). The convergence domain of the BP algorithm has been determined
for several problems, like satisfiability [26], graph colouring [27], error correcting codes [40]
and spin glasses [93]. Within its convergence domain, the BP algorithm is indeed very fast, and
this is its real strength. See the next subsection for some performance tests and a comparison
with provably convergent algorithms.

Once a fixed point has been obtained it is worth asking whether this corresponds to a
minimum of the free energy or not. This has been partially solved by Heskes [94], who has
shown that stable fixed points of the belief propagation algorithm are minima of the CVM pair
approximation free energy, but the converse is not necessarily true. Actually, examples can
be found of minima of the free energy which correspond to unstable fixed points of the belief
propagation algorithm.

An important advancement in this topic is the generalized belief propagation (GBP)
algorithm by Yedidia and coworkers [31]. The fixed points of the GBP algorithm for a certain
choice of clusters correspond to stationary points of the CVM free energy at the approximation
level corresponding by the same choice of clusters or, more generally, of a region graph free
energy. Actually, for a given choice of clusters, different GBP algorithms can be devised.
Here only the so-called parent to child GBP algorithm [56] will be considered. Other choices
are described in [56].

In order to better understand this algorithm, note a few characteristics of the belief
propagation algorithm. First of all, looking at the probabilities equation (73) one can say that
a variable node receives messages from all the factor nodes it belongs to, while a factor node
a receives messages from all the other factor nodes to which its variable nodes i ∈ a belong.
In addition, the constraint corresponding to the message ma→i (si) (see equation (75)) can be
written as ∑

sa\i

pa(sa) =
∑
i∈b

∑
sb\i

pb(sb) − (di − 1)pi(si). (77)

The parent to child GBP algorithm generalizes these characteristics in a rather
straightforward way. First of all, messages mα→β(sβ) (β ⊂ α) are introduced from regions
(parent regions) to subregions (child regions). Then, the probability of a region takes into
account messages coming from outer regions to itself and its subregions. Finally, exploiting
the property equation (19) of the Möbius numbers, the constraint corresponding to mα→β(sβ)

is written in the form∑
α⊆γ∈R

aγ

∑
sγ \β

pγ (sγ ) =
∑

β⊆γ∈R

aγ

∑
sγ \β

pγ (sγ ). (78)

It can be shown [56] that this new set of constraints is equivalent to the original one.
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To make this more rigorous, consider the free energy given by equations (20) and (21),
with the above compatibility constraints (with Lagrange multipliers ln mα→β(sβ)) and the
usual normalization constraints (with multipliers λα). One obtains

F =
∑
γ∈R

aγ

∑
sγ

[pγ (sγ )Hγ (sγ ) + pγ (sγ ) ln pγ (sγ )] +
∑
γ∈R

λγ


∑

sγ

pγ (sγ ) − 1




+
∑

β⊂α∈R

∑
sβ

ln mα→β(sβ)


 ∑

α⊆γ∈R

aγ

∑
sγ \β

pγ (sγ ) −
∑

β⊆γ∈R

aγ

∑
sγ \β

pγ (sγ )


 ,

(79)

where it is not necessary to put all the possible α → β compatibility constraints, but it is
enough to put those which satisfy aα �= 0, aβ �= 0 and β is a direct subregion of α, that is
there is no region γ with aγ �= 0 such that β ⊂ γ ⊂ α. Note also that the Lagrange term
corresponding to the α → β constraint can be written as

−ln mα→β(sβ)

α�γ∑
β⊆γ∈R

aγ

∑
sγ \β

pγ (sγ ). (80)

The stationarity conditions
∂F

∂pγ (sγ )
= 0 (81)

can then be solved, leaving apart normalization, by

pγ (sγ ) ∝ exp[−Hγ (sγ )]
∏
β⊆γ

α�γ∏
β⊂α∈R

mα→β(sβ), (82)

where sβ denotes the restriction of sγ to subregion β.
Finally, message update rules can be derived again by the compatibility constraints, though

some care is needed, since in the general case these constraints are not immediately solved
with respect to the (updated) messages, as it occurs in the derivation of equation (76). Here
one obtains a coupled set of equations in the updated messages, which can be solved starting
from the constraints involving the smallest clusters.

An example can be helpful here. Consider a model defined on a regular square lattice, with
periodic boundary conditions, and the CVM square approximation, that is the approximation
obtained by taking the elementary square plaquettes as maximal clusters. The entropy
expansion contains only terms for square plaquettes (with Möbius numbers 1), NN pairs
(Möbius numbers −1) and single nodes (Möbius numbers 1), as in equation (48). A minimal
set of compatibility constraints includes node–pair and pair–square constraints, and one has
therefore to deal with square-to-pair and pair-to-node messages, which will be denoted by
mij,kl(si, sj ) and mi,j (si) respectively. With reference to the portion of the lattice depicted in
figure 14 the probabilities, according to equation (82), can be written as

pi(si) ∝ exp[−Hi(si)]mi,a(si)mi,j (si)mi,l(si)mi,h(si),

pij (si, sj ) ∝ exp[−Hij (si, sj )]mi,a(si)mi,l(si)mi,h(si)

×mj,b(sj )mj,c(sj )mj,k(sj )mij,ab(si, sj )mij,lk(si, sj ),

pijkl(si, sj , sk, sl) ∝ exp[−Hijkl(si, sj , sk, sl)]mi,a(si)mi,h(si)mj,b(sj )mj,c(sj )

×mk,d(sk)mk,e(sk)ml,f (sl)ml,g(sl)

×mij,ab(si, sj )mjk,cd(sj , sk)mkl,ef (sk, sl)mli,gh(sl, si).

(83)
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Figure 14. A portion of the square lattice.

Imposing node–pair and pair–square constraints one gets equations like

exp[−Hi(si)]mi,j (si) ∝
∑
sj

exp[−Hij (si, sj )]

×mj,b(sj )mj,c(sj )mj,k(sj )mij,ab(si, sj )mij,lk(si, sj ),

exp[−Hij (si, sj )]mi,l(si)mj,k(sj )mij,lk(si, sj ) ∝
∑
sk,sl

exp[−Hijkl(si, sj , sk, sl)]

×mk,d(sk)mk,e(sk)ml,f (sl)ml,g(sl)

×mjk,cd(sj , sk)mkl,ef (sk, sl)mlj,gh(sl, sj ).

(84)

The above equations can be viewed as a set of equations in the updated messages at iteration
t + 1, appearing on the lhs, given the messages at iteration t, appearing on the rhs. It is clear
that one has first to calculate the updated pair-to-site messages according to the first equation,
and then the updated square-to-pair messages according to the second one, using on the lhs
the updated pair-to-site messages just obtained.

GBP (possibly with damping) typically exhibits better convergence properties (and greater
accuracy) than BP, but the empirical rule that a sufficient amount of frustration can make it not
convergent is valid also for GBP. It is therefore fundamental to look for provably convergent
algorithms, which will be discussed in the next subsection. A variation of the BP algorithm, the
conditioned probability (CP) algorithm, with improved convergence properties, has recently
been introduced [95]. The extension of this algorithm beyond the BP level is, however, not
straightforward.

We conclude the present subsection by mentioning that techniques like the Thouless–
Anderson–Palmer equations, or the cavity method, both widely used in the statistical physics
of spin glasses, are strictly related to the Bethe–Peierls approximation.

The Thouless–Anderson–Palmer [96] equations can be derived from the Bethe–Peierls
free energy for the Ising model, through the so-called Plefka expansion [97]. One has first
to write the free energy as a function of magnetizations and nearest–neighbour correlations
through the parametrization

pi(si) = 1 + simi

2
pij (si, sj ) = 1 + simi + sjmj + sisj cij

4
, (85)



Topical Review R331

then to solve analytically the stationarity conditions with respect to the cij and finally to expand
to second order in the inverse temperature.

Finally, the cavity method [98–100] is particularly important since it allows us to deal with
replica symmetry breaking. The cavity method, though historically derived in a different way,
can be regarded as an alternative choice of messages and effective fields in the Bethe–Peierls
approximation. With reference to equation (73), introduce messages mk→a(sk) from variable
nodes to factor nodes according to

mk→a(sk) =
b �=a∏
k∈b

mb→k(sk). (86)

Then the probabilities equation (73) becomes

pi(si) = 1

Zi

∏
i∈a

ma→i (si) pa(sa) = 1

Za

ψa(sa)
∏
k∈a

mk→a(sk), (87)

and the message update equations (76) become

ma→i (si) ∝
∑
sa\i

ψa(sa)

k �=i∏
k∈a

mk→a(sk). (88)

The effective fields corresponding to the factor-to-variable messages ma→i (si) are usually
called cavity biases, while those corresponding to the variable-to-factor messages mi→a(si)

are called cavity fields. In the Ising example above a factor node is just a pair of NNs and
cavity biases reduce to effective fields hi,j , while cavity fields take the form

∑k �=j

kNNi hi,k .
The cavity method admits an extension to cases where one step of replica symmetry

breaking occurs [100, 101]. In such a case one assumes that there exist many states
characterized by different values of the cavity biases and fields, and introduces the probability
distributions of cavity biases and fields over the states. From the above message update rules
one can then derive integral equations, similar to equation (70), for the distributions. These
integral equations can in principle be solved by iterative population dynamics algorithms, but
most often one restricts to the zero temperature case, where these distributions have a discrete
support.

The zero temperature case is particularly relevant for hard combinatorial optimization
problems, where 1-step replica symmetry breaking corresponds to clustering of solutions.
Clustering means that the space of solutions becomes disconnected, made of subspaces which
cannot be reached from one another by means of local moves and hence all local algorithms,
like BP or GBP, are bound to fail. The cavity method has been used to solve these kinds
of problems in the framework of the survey propagation algorithm [25], which has been
shown to be a very powerful tool for constraint satisfaction problems like satisfiability [26]
and colouring [27] defined on finite connectivity random graphs. These graphs are locally
tree like and therefore all the analysis can be carried out at the Bethe–Peierls level. A sort of
generalized survey propagation capable of dealing with short loops would be really welcomed,
but it seems that realizability issues are crucial here and replica symmetry breaking can only
be introduced when CVM gives an exact solution.

A different approach, still aimed to generalize the BP algorithm to situations where
replica symmetry breaking occurs, has been suggested by van Mourik [28], and is based on
the analysis of the time evolution of the BP algorithm.

6.3. Variational algorithms

In the present subsection we discuss algorithms which update probabilities instead of messages.
At every iteration a new estimate of probabilities, and hence of the free energy, is obtained.
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These algorithms are typically provably convergent, and the proof is based on showing that
the free energy decreases at each iteration. This is of course not possible with BP and GBP
algorithms, where the probabilities and the free energy can be evaluated only at the fixed point.
The price one has to pay is that in variational algorithms one has to solve the compatibility
constraints at every iteration, and therefore these are double loop algorithms, where the outer
loop is used to update probabilities and the inner loop is used to solve the constraints.

The natural iteration method (NIM) [102, 103] is the oldest algorithm specifically designed
to minimize the CVM variational free energy. It was originally introduced [102] in the context
of homogeneous models, for the pair and tetrahedron (for the fcc lattice) approximations.
In such cases the compatibility constraints are trivial. Later [103] it was generalized to
cases where the compatibility constraints cannot be solved trivially. An improved version of
the algorithm, with tunable convergence properties, appeared in [104] and its application is
described in some detail also in [105], where higher order approximations are considered.

The algorithm is based on a double loop scheme, where the inner loop is used to solve the
compatibility constraints, so that at each iteration of the outer loop a set of cluster probabilities
which satisfy the constraints is obtained.

Proof of convergence, based on showing that the free energy decreases at every outer loop
iteration, exists in many cases, but it has also been shown that there are non-convergent cases,
like the four-dimensional Ising model [106] in the hypercube approximation.

We do not discuss in detail this algorithm since it is rather slow, and better alternatives
have been recently developed.

A first step in this direction was the concave–convex procedure (CCCP) by Yuille [107],
who started from the observation that the non-convergence problems of message-passing
algorithms arise from concave terms in the variational free energy, that is from the entropy of
clusters with negative Möbius numbers. His idea was then to split the CVM free energy into
a convex and a concave part,

F({pα}) = Fvex({pα}) + Fcave({pα}), (89)

and to write the update equations to be iterated to a fixed point as

∇Fvex
({

p(t+1)
α

}) = −∇Fcave
({

p(t)
α

})
, (90)

where p(t)
α and p(t+1)

α are successive iterates. In order to solve the compatibility constraints,
at each iteration of equation (90), the Lagrange multipliers enforcing the constraints are
determined by another iterative algorithm where one solves for one multiplier at a time, and
it can be shown that the free energy decreases at each outer loop iteration. Therefore we have
another double loop algorithm, which is provably convergent, faster than NIM (as we shall
see below) and allows some freedom in the splitting between convex and concave parts.

A more general and elegant formalism, which will be described in the following, has,
however, been put forward by Heskes, Albers and Kappen (HAK) [84]. Their basic idea
is to consider a sequence of convex variational free energies such that the sequence of the
corresponding minima tends to the minimum of the CVM free energy. More precisely, if the
CVM free energy F({pα, α ∈ R}) is denoted for simplicity by F(p), they consider a function
Fconv(p, p′), convex in p, with the properties

Fconv(p, p′) � F(p), Fconv(p, p) = F(p). (91)

The algorithm is then defined by the update rule for the probabilities

p(t+1) = arg min
p

Fconv(p, p(t)), (92)

and it is easily proved that the free energy decreases at each iteration and that a minimum of
the CVM free energy is recovered at the fixed point.
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A lot of freedom is left in the definition of Fconv, and strategies of varying complexity and
speed can be obtained. NIM (when convergent) and CCCP can also be recovered as special
cases. The general framework is based on the following three properties.

(i) If β ⊂ α, then

−Sα + Sβ =
∑
sα

pα(sα) ln pα(sα) −
∑
sβ

pβ(sβ) ln pβ(sβ) (93)

is convex over the constraint set, i.e. it is a convex function of pα and pβ if these satisfy
the compatibility constraint equation (23).

(ii) The linear bound

Sβ = −
∑
sβ

pβ(sβ) ln pβ(sβ) � −
∑
sβ

pβ(sβ) ln p′
β(sβ) = S ′

β (94)

holds, with equality only for p′
β = pβ

(iii) If γ ⊂ β, and pβ and pγ (p′
β and p′

γ ) satisfy the compatibility constraints, the bound

Sβ − Sγ = −
∑
sβ

pβ(sβ) ln pβ(sβ) +
∑
sγ

pγ (sγ ) ln pγ (sγ )

� −
∑
sβ

pβ(sβ) ln p′
β(sβ) +

∑
sγ

pγ (sγ ) ln p′
γ (sγ ) = S ′

β − S ′
γ (95)

holds, and it is tighter than the previous bound. A tighter bound typically entails faster
convergence.

In order to give an example, consider again the CVM square approximation for a model
on a regular square lattice with periodic boundary conditions and focus on the entropy part of
the free energy, which according to the entropy expansion equation (48) has the form

−
∑
�

S� +
∑
〈ij〉

Sij −
∑

i

Si =
∑
�

p� ln p� −
∑
〈ij〉

pij ln pij +
∑

i

pi ln pi. (96)

This contains both convex (from square and site entropy) and concave terms (from pair
entropy). Note that the numbers of plaquettes is the same as the number of sites, while there
are two pairs (e.g. horizontal and vertical) per site. This implies that the free energy is not
convex over the constraint set.

Several bounding schemes are possible to define Fconv. For instance, one can obtain a
function which is just convex over the constraint set by applying property (iii) to the site terms
and half the pair terms, with the result

−
∑
�

S� +
∑
〈ij〉

Sij −
∑

i

Si � −
∑
�

S� +
1

2

∑
〈ij〉

Sij +
1

2

∑
〈ij〉

S ′
ij −

∑
i

S ′
i . (97)

In the following the HAK algorithm will always be used with this bounding scheme.
The NIM can be obtained if, starting from the above expression, one applies property (ii)

to the not yet bounded pair terms, with the result

−
∑
�

S� +
∑
〈ij〉

Sij −
∑

i

Si � −
∑
�

S� +
∑
〈ij〉

S ′
ij −

∑
i

S ′
i . (98)

This is clearly a looser bound than the previous one, and hence it leads to a (much) slower
algorithm. In the general case, the NIM (which of course was formulated in a different way)
can be obtained by bounding all entropy terms except those corresponding to the maximal
clusters. This choice does not always lead to a convex bound (though in most practically
relevant cases this happens) and hence convergence is not always guaranteed.
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The CCCP recipe corresponds to bounding every concave (aβ < 0) term by

−aβSβ � −Sβ + (1 − aβ)S ′
β, (99)

using property (ii). In the present case this gives

−
∑
�

S� +
∑
〈ij〉

Sij −
∑

i

Si � −
∑
�

S� −
∑
〈ij〉

Sij + 2
∑
〈ij〉

S ′
ij −

∑
i

Si, (100)

which is convex independently of the constraints, and hence the bound is again looser than
equation (97).

In all cases one is left with a double loop algorithm, the outer loop being defined by the
update rule for probabilities, and the inner loop being used for the minimization involved in
equation (92). This minimization is simpler than the original problem, since the function to
be minimized is convex. In each of the above schemes a particular technique was proposed
for the convex minimization in the inner loop, and here these will not be covered in detail.

A point which is important to note here is that the bounding operation gives a new free
energy which is structurally different from a CVM free energy. It must be minimized with
respect to p at fixed p′ and, viewed as a function of p, it contains an entropy expansion with
coefficients ãβ which do not satisfy anymore the Möbius relation (19) (for instance, in the
‘just convex over the constraint set’ scheme, we have a� = 1, aij = −1/2 and ai = 0). This
means that a message-passing algorithm like parent-to-child GBP, which relies on the Möbius
property, cannot be applied. In [84] a different message-passing algorithm, which can still be
viewed as a GBP algorithm, is suggested.

Observe also that there are entropy-like terms S ′
β which are actually linear in pβ and must

therefore be absorbed in the energy terms.
The main reason for investigating these double loop, provably convergent algorithms, is the

non-convergence of BP and GBP in frustrated cases. Since BP and GBP, when they converge,
are the fastest algorithms for the determination of the minima of the CVM free energy, it is
worth making some performance tests to evaluate the speed of the various algorithms. The
CPU times reported below refer to an Intel Pentium 4 processor at 3.06 GHz, using g77 under
GNU/Linux.

Consider first a chain of N Ising spins, with ferromagnetic interactions J > 0 and random
bimodal fields hi independently drawn from the distribution

p(hi) = 1
2δ(hi − h0) + 1

2δ(hi + h0). (101)

The boundary conditions are open, and the model is exactly solved by the CVM pair
approximation. The various algorithms described are run from a disordered, uncorrelated
state and stopped when the distance between two successive iterations, defined as the sum
of the squared variations of the messages (or the probabilities, or the Lagrange multipliers,
depending on the algorithm and the loop—outer or inner—considered) becomes smaller than
10−14N. Figure 15 reports the CPU times obtained with several algorithms, for the case
J = 0.1, h0 = 1. The HAK algorithm is not reported since it reduces to BP due to the
convexity of the free energy. It is seen that the CPU time grows linearly with N for all
algorithms except NIM, in which case it goes like N3. Despite the common linear behaviour,
there are order of magnitude differences between the various algorithms. While BP and CP
converges in 4 and 9 s respectively for N = 106, CCCP takes 15 s for N = 104. For NIM,
finally, the fixed point is reached in 12 s for N = 102.

As a further test, consider, again at the level of the pair approximation, the two-dimensional
Edwards–Anderson spin-glass model, defined by the Hamiltonian equation (5) with hi = 0
and random bimodal interactions Jij independently drawn from the distribution

p(Jij ) = (1 − p)δ(Jij − J ) + pδ(Jij + J ). (102)
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Figure 15. CPU times (seconds) for the 1d Ising chain with random fields.
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Figure 16. CPU times (seconds) for the 2d Edwards–Anderson model in the paramagnetic phase.

Here the frustration effects are even more important and the non-convergence problem of
BP becomes evident. As a rule of thumb, when the temperature, measured by J−1, is small
enough and p (the fraction of antiferromagnetic bonds) is large enough, the BP algorithm
stops converging. The condition for the instability of the BP fixed point has been computed,
in the average case, for Ising spin glass models with pairwise interactions [93]. In order to
compare algorithm performances, figure 16 reports CPU times versus L for N = L2 lattices
with periodic boundary conditions, J = 0.2 and p = 1/2, that is well into the paramagnetic
phase of the model. The initial guess is a ferromagnetic state with mi = 0.9,∀i. It is seen that
the CPU times scale roughly as N1.1 for all the algorithms considered except NIM, which goes
like N1.8. Again the algorithms with linear behaviour are separated by orders of magnitude.
For L = 320 BP converges in 6 s, HAK in 370 s and CCCP in 2460 s.

CP has not been considered in the present and the following tests, although empirically it
is seen that its behaviour is rather close to the HAK algorithm. Its performance is, however,
severely limited as soon as one considers variable with more than two states, due to a sum
over the configurations of the neighbourhood of a NN pair.
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Figure 17. CPU times (seconds) for the 2d Edwards–Anderson model in the ferromagnetic phase.

A similar comparison can be made in the ferromagnetic phase, setting J = 0.5 and
p = 0.1. Here the CPU times for the BP algorithm exhibit large fluctuations for different
realizations of the disorder, and the data reported are obtained by averaging over 30 such
realizations (see figure 17). Now all algorithms exhibit comparable scaling properties, with
CPU times growing like N1.5–N1.7. As far as absolute values are concerned, for L = 50
convergence is reached in 4, 44, 680 and 1535 s by BP, HAK, CCCP and NIM, respectively.

A similar scaling analysis was not possible into the glassy phase (which is unphysically
predicted by the pair approximation), due to non-convergence of BP and too large fluctuations
of the convergence time of the other algorithms.

As a general remark we observe that BP is the fastest algorithm available whenever it
converges. Among the provably convergent algorithms, the fastest one turns out to be HAK,
at least in the ‘just convex over the constraints’ [84] scheme which was used here.

7. Conclusions

Some aspects of the cluster variation method have been briefly reviewed. The emphasis was
on recent developments, not yet covered by the 1994 special issue of Progress of Theoretical
Physics Supplement [8], and the focus was on the methodological aspects rather than on the
applications.

The discussion has been based on what can be considered the modern formulation of the
CVM, due to An [54], based on a truncation of the cumulant expansion of the entropy in the
variational principle of equilibrium statistical mechanics.

The advancements in this last decade were often due to the interaction between two
communities of researchers, working on statistical physics and, in a broad sense, probabilistic
graphical models for inference and optimization problems. The interest of both communities
is currently on heterogeneous problems, while in the past the CVM was most often applied to
translation invariant lattice models (in this topic, the only new advancements discussed have
been the attempts to extract information about critical behaviour from CVM results). The
more general point of view that has to be adopted in studying heterogeneous problems has
been crucial to achieve many of the results discussed.
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The formal properties of the CVM have been better understood by comparing it with other
region-based approximations, like the junction graph method or the most general formulation
of the Bethe–Peierls approximation (the lowest order of the CVM), which can treat also non-
pairwise interactions. Studying realizability, that is the possibility of reconstructing a global
probability distribution from the marginals predicted by the CVM, has led to the discovery of
non-tree-like models for which the CVM gives the exact solution.

A very important step was made by understanding that belief propagation, a message-
passing algorithm widely used in the literature on probabilistic graphical models, has fixed
points which correspond to stationary points of the Bethe–Peierls approximation. The belief
propagation can thus be regarded as a powerful algorithm to solve the CVM variational
problem, that is to find minima of the approximate free energy, at the Bethe–Peierls level.
This opened the way to the formulation of generalized belief propagation algorithms, whose
fixed points correspond to stationary points of the CVM free energy, at higher level of
approximation.

Belief propagation and generalized belief propagation are certainly the fastest available
algorithms for the minimization of the CVM free energy, but they often fail to converge.
Typically this happens when the problems under consideration are sufficiently frustrated.
In order to overcome this difficulty double loop, provably convergent algorithms have been
devised, for which the free energy can be shown to decrease at each iteration. These are
similar in spirit to the old natural iteration method by Kikuchi, but orders of magnitude faster,
though not as fast as BP and GBP.

When the frustration due to competitive interactions or constraints is very strong, like in
spin-glass models in the glassy phase or in constraints satisfaction problems in the hard regime,
even double loop algorithms become useless, since we are faced with the problem of replica
symmetry breaking, corresponding to clustering of solutions. Very important advancements
have been made in recent years by extending the belief propagation algorithm into this domain.
These results are in a sense at the border of the CVM, since they are at present confined to the
lowest order CVM approximation, that is the Bethe–Peierls approximation.

It will be of particular importance, in view of the applications to hard optimization
problems with non-tree-like structure, to understand how to generalize these results to higher
order approximations.
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